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QUANTUM

• SIMULATING QUANTUM STATES IS IN GENERAL VERY HARD FOR CLASSICAL COMPUTERS. 


• IT IS EXPECTED THAT THE EXACT CLASSICAL SIMULATION OF ARBITRARY QUANTUM 
SYSTEMS IS INEFFICIENT, AS THE RESOURCE OVERHEAD EXPONENTIALLY GROWS WITH 
THE SIZE OF THE SYSTEM.

…
Ψ …NESS

ENTANGLEMENT

MAGIC
Sergey Bravyi and Alexei Kitaev, Phys. Rev. A 71, 022316 (2005)

QUANTUM ADVANTAGE ONLY 
WITH BOTH RESOURCES!

ALERT!

LET’S BE CAREFUL 



• WE ARE NOT ASKING WHETHER AN OPTIMAL QUANTUM ALGORITHM RUNNING ON AN OPTIMAL QUANTUM COMPUTER WOULD 
BE BETTER OR NOT TO AN OPTIMAL CLASSICAL ALGORITHM RUNNING ON AN OPTIMAL CLASSICAL COMPUTER. 


• THE QUESTION IS: DO WE HAVE SITUATIONS WHERE CLASSICAL IS ENOUGH?

Hard classical

Quantum 
simulations

Û|Ψ⟩ σ

P(σ) = |⟨σ | Û |Ψ⟩ |2

E.G.; DIGITISED QUANTUM 
ANNEALING 
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G. Lami, P. Torta, G. E. Santoro, M. Collura, SciPost Phys. 14, 
117 (2023); B. Žunkovič, P. Torta, G. Pecci, G. Lami, M. Collura, 
arXiv:2406.12392.



ENTANGLEMENT

…
Ψ

σ1 σN

σ1 σN

σ1 σN

2N 2N

2Nχ2

|Ψ⟩ = Ψ(σ1, …σN) |σ1, …σN⟩
Ψ(σ1, …σN) = ϕ1(σ1)⋯ϕN(σN)

Ψ(σ1, …, σN) = 𝔸σ1
1 ⋅ 𝔸σ2

2 ⋯𝔸σN
N

PHYSICISTS AGREE TO IDENTIFY THE ENTANGLEMENT AS A FUNDAMENTAL FEATURE ACCOUNTING FOR QUANTUM 
COMPLEXITY, THUS MAKING NECESSARY TO EXPLOIT IT PROFICIENTLY IN ANY QUANTUM COMPUTATION. 

POLINOMIALLY COMPLEX

⟨Ô⟩ = ∑
σ′￼,σ

ϕ(σ′￼)*ϕ(σ) ⟨σ′￼| ̂o |σ⟩

EXPONENTIALLY COMPLEX



ρA = TrE |ψ⟩⟨ψ |

S(A) = − TrA(ρA log ρA) = − ∑
j

λj log λj
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PHYSICAL STATES (LOCAL HAMILTONIANS)

    (AKA AREA LAW)S(A) ∼ Ld−1

N.B.: SOME CRITICAL GROUND STATES HAVE 
LOGARITHMIC CORRECTION  TO THE AREA LAW

# RELEVANT EIGENVALUES 

χ ≈ exp(S)

1D

2D

S(A) ∼ const

S(A) ∼ L

AREA LAW & ENTANGLEMENT ENTROPY



QUANTUM CIRCUIT OR DIGITISED DYNAMICS
DE

PT
H

MPS WITH EXPONENTIALLY LARGE 
BOND DIMENSION

PREPARING AN ENTANGLED STATES IS IN GENERAL AN HARD TASK 

HEISENBERG PICTURE

𝒫 = eiθπ/2
N

∏
j=1

σj : σj ∈ { }
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Ψ U U†O

PAULI GROUP

≡

O = ∑
P∈𝒫

o(P) P

ACTUALLY LESS DUE TO Y
X

Z
= i

GENERATING SET (2N)

{X1, …XN, Z1, …, ZN}

θ = {0,1,2,3}



THE CLIFFORD GROUP
IN GENERAL, UNITARY TRANSFORMATION COULD TAKE A PAULI MATRIX TO ANY OF A RATHER LARGE CLASS OF UNITARY OPERATORS. 

U U† + +=
UNITARY GROUP GENERATOR

=
1

2 [1 1
1 −1] = [1 0

0 i]

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

= [1 0
0 eiπ/4]

UNIVERSAL QUANTUM GATE SET FOR QUANTUM COMPUTATION.

C C† =

NORMALISER OF THE PAULI GROUP 
IN THE UNITARY GROUP

𝒞 = {C ∈ U2N : CPC† = P′￼ for {P, P′￼} ∈ 𝒫}
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Daniel Gottesman, “The Heisenberg Representation of Quantum Computers”, arXiv:9807006
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1.   K = N

2.       

3.           COMPLETELY SPECIFIED BY THE GENERATORS

STABILIZERS
STABILISER GROUP: THE SET OF OPERATORS IN THE PAULI GROUP FOR WHICH THE INPUT STATES ARE +1 
EIGENVECTORS. THE SET OF SUCH OPERATORS IS CLOSED UNDER MULTIPLICATION, AND THEREFORE FORMS A 
GROUP 

𝒮( |ψ⟩) = {S ∈ 𝒫 : S |ψ⟩ = |ψ⟩}
OR THE OTHER WAY ROUND: 

A STATE IS CALLED A STABILISER STATE IF IT IS COMPLETELY DESCRIBED BY SPECIFYING THE STABILISER.

1. ABELIAN

2. DEGREE 2

3. ISOMORPHIC TO

STABILISER GROUP

ℤK
2 , K ≤ N

STABILISER STATE

#gen[𝒮( |ψ⟩)] = N
|ψ⟩

WHY SO IMPORTANT?

|ψ⟩ =

c1
c2
⋮

c2N

𝕊 =

S1
S2
⋮
SN

⇒ 𝕄 =

σ11 σ12 ⋯ σ1N
σ21 σ22 ⋯ σ2N
⋮ ⋮ ⋱ ⋮

σN1 σN2 ⋯ σNN

, ⃗θ =

θ1

θ2
⋮
θN

σij, θj ∈ {0,1,2,3}



1. PREPARATION OF QUBITS IN COMPUTATIONAL BASIS STATES.

2. CLIFFORD GATES.

3. MEASUREMENTS IN THE COMPUTATIONAL BASIS. 

STABILIZERS
THE GOTTESMAN–KNILL THEOREM STATES THAT STABILISER CIRCUITS CAN BE PERFECTLY 
SIMULATED IN POLYNOMIAL TIME ON A PROBABILISTIC CLASSICAL COMPUTER.

0

0

H

I ⊗ I
I ⊗ Z
Z ⊗ I
Z ⊗ Z

I ⊗ I
Z ⊗ Z
X ⊗ X

−Y ⊗ YH

=|00⟩
1

2
( |00⟩ + |11⟩)

𝒮 𝒮′￼

gen[𝒮] gen[𝒮′￼]
I ⊗ Z
Z ⊗ I

Z ⊗ Z
X ⊗ X



THERE ARE MANY STATES IN THE HILBERT SPACE WHICH ARE NOT STABILISER STATES 

T
COMPUTATION
AL TIME Scott Aaronson and Daniel Gottesman, Phys. Rev. A 70, 052328 (2004).

# ∼ poly( N) × exp( )

1. NON-STABILISERNESS (OR MAGIC) IS A FUNDAMENTAL 
RESOURCE FOR ANY QUANTUM ADVANTAGE

NAMELY…HOW MANY “INDEPENDENT” T-GATE 
WE NEED TO PREPARE A NON-STABILISER STATE 

N − #gen[𝒮( |ψ⟩)]STABILISER NULLITY: 



1. HOW TO QUANTIFY MAGIC?


2. HOW TO ENHANCE CLASSICAL SIMULATIONS?



1.                                              IS A STABILISER, OTHERWISE

2. CONSTANT ON  CLIFFORD ORBITS.

3. ADDITIVITY:

STABILISER RENYI ENTROPIES
Mn( |ψ⟩) =

1
1 − n

log ∑
σ∈𝒫

1
2N

Tr[ρσ]2n ρ = |ψ⟩⟨ψ |

Πρ(σ) =
1
2N

Tr[ρ σ]2 ≥ 0, ∑
σ∈𝒫

Πρ(σ) = 1

TO UNDERSTAND THE RELATION WITH USUAL RENYI ENTROPIES 

PROBABILITY DISTRIBUTION OVER THE PAULI STRINGS 

APART FROM A CONSTANT, 
DOES COINCIDES WITH THE 

RÉNYI ENTROPY OF THE 
DISTRIBUTION 

Mn( |ψ⟩) = 0 ⇔ |ψ⟩ Mn( |ψ⟩) > 0

Mn( |ψ⟩ ⊗ |ϕ⟩) = Mn( |ψ⟩) + Mn( |ϕ⟩)

L. Leone, S. F. E. Oliviero, and A. Hamma, Phys. Rev. Lett. 128, 050402 (2022).



PERFECT PAULI SAMPLING
Mn( |ψ⟩) =

1
1 − n

log 𝔼[Πρ(σ)n−1] − N log 2

M1( |ψ⟩) = − 𝔼[log Πρ(σ)] − N log 2

THE TASK OF SAMPLING FROM THE SET OF THE PAULI STRINGS, 
WHICH HAS SIZE  , MAY APPEAR AS EXPONENTIALLY HARD. 4N

Πρ(σ) = πρ(σ1)πρ(σ2 |σ1)⋯πρ(σN |σ1⋯σN−1) πρ(σj |σ1⋯σj−1) =
πρ(σ1⋯σj)

πρ(σ1⋯σj−1)

ρj−1 ≡
ρ |σ1⋯σj−1

πρ(σ1⋯σj−1)1/2
, Tr[ρ2

j−1] = 1

IN OTHER TERMS, THE CONDITIONAL 
PROBABILITY AT THE STEP , CAN BE THOUGHT 
AS THE PROBABILITY  IN THE 
PARTIALLY PROJECTED STATE 

j
πρj−1

(σj)



PERFECT PAULI SAMPLING

ρj = πρj−1
(σj)−1/2ρj−1 |σj

ITERATIVE PROCEDURE

WE CAN GENERATE THE OUTCOMES (AND THE PROBABILITIES OF THAT OUTCOMES) BY ITERATING OVER EACH SINGLE QUBITS: 


• SAMPLING EACH LOCAL PAULI MATRIX ACCORDING TO THE CONDITIONAL PROBABILITIES. 


• ONCE A LOCAL OUTCOME OCCURS, THE STATE IS UPDATED ACCORDINGLY.


• THE ITERATION PROCEEDS UNTIL ALL QUBITS ARE SAMPLED.

IN ORDER FOR THIS METHOD TO BE COMPUTATIONALLY 
AFFORDABLE, WE NEED AN EFFICIENT WAY OF:


1. EVALUATING THE CONDITIONAL PROBABILITIES


2. UPDATING THE STATE ACCORDING TO THE LOCAL OUTCOME

TRUE FOR

MPS

ρj−1 ≡
ρ |σ1⋯σj−1

πρ(σ1⋯σj−1)1/2
, Tr[ρ2

j−1] = 1

G. Lami and M. Collura, Phys. Rev. Lett. 131, 180401 (2023).



PERFECT PAULI SAMPLING
Πρ(σ) = πρ(σ1)πρ(σ2 |σ1)⋯πρ(σN |σ1⋯σN−1)

3

Algorithm 1 Pauli sampling from MPS
Input: an MPS | i of size N

1: Put the MPS in right-normalized form.
2: Initialize L = (1) and ⇧ = 1 (see Fig.2 a))
3: for (i = 1, i = N , i++) do
4: Compute the probabilities ⇡(↵) = ⇡⇢(�

↵|�1 · · ·�i�1)
for ↵ 2 {0, 1, 2, 3} as in Fig.2 b).

5: Generate a random value of ↵ according to ⇡(↵)
6: Set �i = �

↵, update ⇧ ! ⇧ · ⇡(↵)
7: Update L as in Fig.2 c).
8: end for

Output: a Pauli string ��� and the probability ⇧(���)

MPS iterative algorithm. – Let us consider a pure
state | i represented in the following MPS form [35–37]

| i =
X

s1,s2,...,sN

As1
1 As2

2 · · ·AsN
N

|s1, s2, . . . , sN i, (5)

with Asj

j
being �⇥ � matrices, except at the left (right)

boundary where As1
1 (AsN

N
) is a 1⇥� (�⇥1) row (column)

vector. Here |sji 2 {|0i, |1i} is a local computational
basis. The state is assumed right-normalised, namelyP

sj
Asj

j
(Asj

j
)† = 1. Following the conditional sampling

prescription described in the previous section, we start
from the first term of the expansion in Eq. (3). This can
be written as

⇡⇢(�1) =
1

2N

X

���2PN�1

h |�1���| i h ⇤|�⇤
1���

⇤| ⇤i , (6)

where we used the fact that the Pauli matrices are hermi-
tian. In terms of the operators ⇤�i =

1
2�i ⌦ �⇤

i
and ⇤i =

1
2

P
�i

�
�i ⌦ �⇤

i

�
, each acting on the local Hilbert space

given by a spin and its replica, the previous equation
reads ⇡⇢(�1) =

⇥
h | ⌦ h ⇤|

⇤
⇤�1⇤2 · · ·⇤N

⇥
| i ⌦ | ⇤i

⇤
.

Now, the following property can easily be proven

⇥
hs0

i
|⌦ hr0

i
|
⇤
⇤i

⇥
|sii ⌦ |rii

⇤
= �s0i,r0i�si,ri , (7)

meaning that ⇤i is just two copies of the identity opera-
tor connecting the spin |sii and its replica (whose local
computational basis is now indicated as |rii 2 {|0i, |1i}).
Using Eq. (7) together with the right-normalization of
the MPS, the computation of Eq. (6) reduces in the fol-
lowing local tensor contraction

⇡⇢(�1) =
1

2

X

s1,s
0
1,r1,r

0
1

(As
0
1

1 )⇤Ar
0
1

1 (�1)s01s1(�
⇤
1)r01r1As1

1 (Ar1
1 )⇤ ,

(8)
which is represented in Fig. 1 by means of the standard
Tensor Network graphical notation [35, 36].

After evaluating ⇡⇢(�1) for each {�0,�1,�2,�3}
one can extract a sample from this distribution,
thus obtaining the first element of the Pauli string.

Figure 2. The iterative sampling Algorithm 1.

The information about the partially projected state
Eq. (4) is encoded in an e↵ective environment matrix

L = 1p
2⇡⇢(�1)

P
s1,s

0
1
(As

0
1

1 )⇤(�1)s01s1As1
1 . The calculation

of the next terms of Eq. (3) and the extraction of the
remaining �i proceeds following the same line. The full
sampling recipe is summarized in the Algorithm 1, and
graphically supported in Fig. 2. Our approach can be
generalized to estimate Mn(⇢) in the case in which ⇢
is the reduced density matrix describing the rightmost
N qubits embedded in a larger pure MPS state. It is
easy to show that this operation would only a↵ect the
initialization of the matrix L (which is set to (1) for a
pure state), where in the general case L = ⇤2/

p
Tr(⇤4)

in terms of the Schmidt eigenvalues ⇤.

Sampling error. – In this section we discuss the sta-
tistical errors associated with the proposed sampling al-
gorithm, and their scaling with the system size N . Let
us first consider the case of estimating the n�SRE, with
n > 1. As we saw, the estimation of qn =

P
���2PN

⇧⇢(���)n

is achieved by a statistical average over the samples
{���µ}Nµ=1, that means using the estimator

q̃n =
1

N

NX

µ=1

⇧⇢(���µ)
n�1 . (9)

Afterwards, we evaluate the density of magic as m̃n =�
N(1 � n)

��1
log q̃n � log 2. Notice that q̃n is an un-

biased estimator of qn, since q̃n = qn ( indicating the
average over the uncorrelated samples, each distributed
according to ⇧⇢(���)). The fluctuations of q̃n are char-
acterized by its variance, which can be easily evaluated
as Var[q̃n] = Var[⇧n�1

⇢
]/N . For every n > 1, one has

Var[⇧n�1
⇢

] < 1 and thus we can upper bound the variance
of the estimator obtaining Var[q̃n] < const./N , where
const. is a constant of o(1), whose value is independent
of the size D = 4N of the support of ⇧⇢(���). This means

|ψ⟩ =

2

time-evolution of the SREs.

Preliminaries. — Let us consider a quantum sys-
tem consisting of N qubits. We identify the Pauli
matrices by {�↵}3

↵=0, with �0 = 1, and with ��� =Q
N

j=1 �j 2 PN a generic N�qubits Pauli strings where

PN = {�0,�1,�2,�3}⌦N . For a pure normalised state
⇢ = | ih |, the SREs [27] are given by

Mn(⇢) =
1

1� n
log

X

���2PN

1

2N
Tr[⇢���]2n. (1)

To understand the relation with usual Rényi entropies,
let us consider the non-negative real-valued function
⇧⇢(���) =

1
2N Tr[⇢���]2. We have indeed

X

���2PN

⇧⇢(���) = Tr

"
⇢

X

���2PN

1

2N
Tr[⇢���]���

#
= Tr[⇢2] = 1,

(2)
where we used the unique decomposition ⇢ =
2�N

P
���
Tr[⇢���]���, in terms of the Pauli matrices, which

are a complete orthonormal basis with respect to the
scalar product Tr[����0�0�0] = 2N�

����
0

�
0

�
0 . We can thus in-

terpret ⇧⇢(���) as a probability distribution on the
set of Pauli strings. Therefore Mn(⇢) = (1 �
n)�1 log

P
���2PN

⇧⇢(���)n�N log 2, apart from a constant,
does coincides with the n-Rényi entropy of the distri-
bution ⇧⇢(���), and it reduces to the Shannon entropy
M1(⇢) = �

P
���2PN

⇧⇢(���) log⇧⇢(���)�N log(2) for n ! 1.
Let us mention that, the definition ofMn(⇢) can be easily
extended to arbitrary (non-pure) states ⇢ by normalizing
the probability with the purity Tr[⇢2] 6= 1, thus redefin-
ing ⇧⇢(���) =

1
2N Tr[⇢���]2/Tr[⇢2]. It has been shown that

SREs have the following properties [27], accordingly be-
ing a good measure of magic: i)Mn vanishes for stabilizer
states whereas is positive for other states; ii) are invariant
under Cli↵ord unitaries; iii) are additive. Moreover, they
grow extensively with the system size N , thus making
possible to define a density of magic as mn = Mn/N [29].
Recently, a violation of monotonicity for the SREs with
0  n < 2 has been reported for systems undergoing
measurements in the computational basis [34].

Computing the SREs in Eq. (1) requires the evaluation
of the expectation value of a generic power ⇧⇢(���)n�1

(or log⇧⇢(���) for n = 1) over the probability distribution
⇧⇢(���) itself. This suggests a natural way to estimate
the SREs, based on a sampling from ⇧⇢(���).

Conditional sampling. – The task of sampling from
the set of the Pauli strings ���, which has sizeD = 4N , may
appear as exponentially hard. To overcome this di�culty
we rewrite the full probability in terms of conditional and
prior (or marginal) probabilities as

⇧⇢(���) = ⇡⇢(�1)⇡⇢(�2|�1) · · ·⇡⇢(�N |�1 · · ·�N�1) (3)

Figure 1. MPS evaluation of the marginal probability ⇡⇢(�1).
Dotted lighter shapes represent conjugate tensors. Contrac-
tions over the auxiliary indices can be easily carried out
thanks to the property in Eq. (7), together with the right-
normalization of the Ai tensors.

where ⇡⇢(�j |�1 · · ·�j�1) = ⇡⇢(�1···�j)
⇡⇢(�1···�j�1)

is the probabil-

ity that the Pauli matrix �j occurs at position j given
that the string �1 · · ·�j�1 has already occurred at posi-
tions 1 . . . j � 1, no matter the occurrences in the rest
of the system (i.e. marginalising over all possible Pauli
strings for the reaming qubits j + 1 . . . N). Specifically,
one has ⇡⇢(�1 · · ·�j) =

P
���2PN�j

1
2N Tr[⇢ �1 · · ·�j���]2. In

other terms, the conditional probability at the step j,
i.e. ⇡⇢(�j |�1 · · ·�j�1), can be thought as the probability
⇡⇢j�1(�j) of getting �j in the partially projected state

⇢j�1 ⌘
⇢|�1···�j�1

⇡⇢(�1 · · ·�j�1)1/2
(4)

where we have defined the state ⇢|�1···�j�1 ⌘
2�N

P
���2PN�j+1

Tr[⇢ �1 · · ·�j�1���]�1 · · ·�j�1��� where, in
the Pauli matrices decomposition of ⇢, we are only keep-
ing the contribution with fixed �1 · · ·�j�1. Notice that
such state is not normalised, however Tr[⇢2

j�1] = 1, and
the probability that the remaining string ��� 2 PN�j+1

occurs is exactly given by ⇡⇢(���|�1 · · ·�j�1). From the
definition in Eq. (4), we can easily get the recursive
relation ⇢j = ⇡⇢j�1(�j)

�1/2⇢j�1|�j . Thanks to that,
we can generate the outcomes (and the probabilities
of that outcomes) by iterating over each single qubits,
and sampling each local Pauli matrix according to the
conditional probabilities. Once a local outcome occurs,
the state is updated accordingly, and the iteration
proceeds until all qubits are sampled. At the end of this
procedure, as a direct result of the chain rule in Eq. (3),
we generated configurations ��� with probability ⇧⇢(���).
Of course, in order for this method to be computationally
a↵ordable, we need an e�cient way of: (i) evaluating
the conditional probabilities; (ii) updating the state
according to the local outcome. In the following Section
we show that these conditions are met whenever the
state admits an MPS representation.

2

time-evolution of the SREs.

Preliminaries. — Let us consider a quantum sys-
tem consisting of N qubits. We identify the Pauli
matrices by {�↵}3
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tions over the auxiliary indices can be easily carried out
thanks to the property in Eq. (7), together with the right-
normalization of the Ai tensors.

where ⇡⇢(�j |�1 · · ·�j�1) = ⇡⇢(�1···�j)
⇡⇢(�1···�j�1)

is the probabil-

ity that the Pauli matrix �j occurs at position j given
that the string �1 · · ·�j�1 has already occurred at posi-
tions 1 . . . j � 1, no matter the occurrences in the rest
of the system (i.e. marginalising over all possible Pauli
strings for the reaming qubits j + 1 . . . N). Specifically,
one has ⇡⇢(�1 · · ·�j) =

P
���2PN�j

1
2N Tr[⇢ �1 · · ·�j���]2. In

other terms, the conditional probability at the step j,
i.e. ⇡⇢(�j |�1 · · ·�j�1), can be thought as the probability
⇡⇢j�1(�j) of getting �j in the partially projected state

⇢j�1 ⌘
⇢|�1···�j�1

⇡⇢(�1 · · ·�j�1)1/2
(4)

where we have defined the state ⇢|�1···�j�1 ⌘
2�N

P
���2PN�j+1

Tr[⇢ �1 · · ·�j�1���]�1 · · ·�j�1��� where, in
the Pauli matrices decomposition of ⇢, we are only keep-
ing the contribution with fixed �1 · · ·�j�1. Notice that
such state is not normalised, however Tr[⇢2

j�1] = 1, and
the probability that the remaining string ��� 2 PN�j+1

occurs is exactly given by ⇡⇢(���|�1 · · ·�j�1). From the
definition in Eq. (4), we can easily get the recursive
relation ⇢j = ⇡⇢j�1(�j)

�1/2⇢j�1|�j . Thanks to that,
we can generate the outcomes (and the probabilities
of that outcomes) by iterating over each single qubits,
and sampling each local Pauli matrix according to the
conditional probabilities. Once a local outcome occurs,
the state is updated accordingly, and the iteration
proceeds until all qubits are sampled. At the end of this
procedure, as a direct result of the chain rule in Eq. (3),
we generated configurations ��� with probability ⇧⇢(���).
Of course, in order for this method to be computationally
a↵ordable, we need an e�cient way of: (i) evaluating
the conditional probabilities; (ii) updating the state
according to the local outcome. In the following Section
we show that these conditions are met whenever the
state admits an MPS representation.

2

time-evolution of the SREs.

Preliminaries. — Let us consider a quantum sys-
tem consisting of N qubits. We identify the Pauli
matrices by {�↵}3

↵=0, with �0 = 1, and with ��� =Q
N

j=1 �j 2 PN a generic N�qubits Pauli strings where

PN = {�0,�1,�2,�3}⌦N . For a pure normalised state
⇢ = | ih |, the SREs [27] are given by

Mn(⇢) =
1

1� n
log

X

���2PN

1

2N
Tr[⇢���]2n. (1)

To understand the relation with usual Rényi entropies,
let us consider the non-negative real-valued function
⇧⇢(���) =

1
2N Tr[⇢���]2. We have indeed

X

���2PN

⇧⇢(���) = Tr

"
⇢

X

���2PN

1

2N
Tr[⇢���]���

#
= Tr[⇢2] = 1,

(2)
where we used the unique decomposition ⇢ =
2�N

P
���
Tr[⇢���]���, in terms of the Pauli matrices, which

are a complete orthonormal basis with respect to the
scalar product Tr[����0�0�0] = 2N�

����
0

�
0

�
0 . We can thus in-

terpret ⇧⇢(���) as a probability distribution on the
set of Pauli strings. Therefore Mn(⇢) = (1 �
n)�1 log

P
���2PN

⇧⇢(���)n�N log 2, apart from a constant,
does coincides with the n-Rényi entropy of the distri-
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M1(⇢) = �

P
���2PN

⇧⇢(���) log⇧⇢(���)�N log(2) for n ! 1.
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ing ⇧⇢(���) =

1
2N Tr[⇢���]2/Tr[⇢2]. It has been shown that

SREs have the following properties [27], accordingly be-
ing a good measure of magic: i)Mn vanishes for stabilizer
states whereas is positive for other states; ii) are invariant
under Cli↵ord unitaries; iii) are additive. Moreover, they
grow extensively with the system size N , thus making
possible to define a density of magic as mn = Mn/N [29].
Recently, a violation of monotonicity for the SREs with
0  n < 2 has been reported for systems undergoing
measurements in the computational basis [34].

Computing the SREs in Eq. (1) requires the evaluation
of the expectation value of a generic power ⇧⇢(���)n�1

(or log⇧⇢(���) for n = 1) over the probability distribution
⇧⇢(���) itself. This suggests a natural way to estimate
the SREs, based on a sampling from ⇧⇢(���).

Conditional sampling. – The task of sampling from
the set of the Pauli strings ���, which has sizeD = 4N , may
appear as exponentially hard. To overcome this di�culty
we rewrite the full probability in terms of conditional and
prior (or marginal) probabilities as

⇧⇢(���) = ⇡⇢(�1)⇡⇢(�2|�1) · · ·⇡⇢(�N |�1 · · ·�N�1) (3)

Figure 1. MPS evaluation of the marginal probability ⇡⇢(�1).
Dotted lighter shapes represent conjugate tensors. Contrac-
tions over the auxiliary indices can be easily carried out
thanks to the property in Eq. (7), together with the right-
normalization of the Ai tensors.

where ⇡⇢(�j |�1 · · ·�j�1) = ⇡⇢(�1···�j)
⇡⇢(�1···�j�1)

is the probabil-

ity that the Pauli matrix �j occurs at position j given
that the string �1 · · ·�j�1 has already occurred at posi-
tions 1 . . . j � 1, no matter the occurrences in the rest
of the system (i.e. marginalising over all possible Pauli
strings for the reaming qubits j + 1 . . . N). Specifically,
one has ⇡⇢(�1 · · ·�j) =

P
���2PN�j

1
2N Tr[⇢ �1 · · ·�j���]2. In

other terms, the conditional probability at the step j,
i.e. ⇡⇢(�j |�1 · · ·�j�1), can be thought as the probability
⇡⇢j�1(�j) of getting �j in the partially projected state

⇢j�1 ⌘
⇢|�1···�j�1

⇡⇢(�1 · · ·�j�1)1/2
(4)

where we have defined the state ⇢|�1···�j�1 ⌘
2�N

P
���2PN�j+1

Tr[⇢ �1 · · ·�j�1���]�1 · · ·�j�1��� where, in
the Pauli matrices decomposition of ⇢, we are only keep-
ing the contribution with fixed �1 · · ·�j�1. Notice that
such state is not normalised, however Tr[⇢2

j�1] = 1, and
the probability that the remaining string ��� 2 PN�j+1

occurs is exactly given by ⇡⇢(���|�1 · · ·�j�1). From the
definition in Eq. (4), we can easily get the recursive
relation ⇢j = ⇡⇢j�1(�j)

�1/2⇢j�1|�j . Thanks to that,
we can generate the outcomes (and the probabilities
of that outcomes) by iterating over each single qubits,
and sampling each local Pauli matrix according to the
conditional probabilities. Once a local outcome occurs,
the state is updated accordingly, and the iteration
proceeds until all qubits are sampled. At the end of this
procedure, as a direct result of the chain rule in Eq. (3),
we generated configurations ��� with probability ⇧⇢(���).
Of course, in order for this method to be computationally
a↵ordable, we need an e�cient way of: (i) evaluating
the conditional probabilities; (ii) updating the state
according to the local outcome. In the following Section
we show that these conditions are met whenever the
state admits an MPS representation.
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MPS ITERATIVE ALGORITHM

IMPROVED SCALING WITH BOND DIMENSION!!

T. Haug and L. Piroli, Phys. Rev. B 107, 035148 (2023)

O(Nχ6n) O(𝒩Nχ3)

Pauli Sampling of MPS

Summary of our Algorithm
• sample Πρ(σσσ) by iteratively sampling the conditional probabilities πρ(σi|σ1...σi−1),

for i = 1, 2, ...N ;
• for an MPS |ψ〉 of bond dimension χ, the cost of each Pauli sample is O(Nχ3);
• the final output is a Pauli string σσσ with probability Πρ(σσσ);
• by repeating N times, you can find accurate estimations of Mn(|ψ〉).
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Figure 3. a) Density of magic of | i = UC |T�i⌦N for N =
10, 60, N = 104 and Rényi index n = 1, 2. In the lower strip
we show the deviation from the analytical value � = (mn �
m̃n)/�m̃n, m̃n being our estimation and �m̃n the propagated
statistical error. b) The error �m̃n as a function of the system
size N for fixed N = 103, 105 and � ' ⇡/4.

that the statistical error on q̃n can be reduced arbitrarily
by increasing the number of samples, no matter the sys-
tem size N . However, since the uncertainty on m̃n prop-
agates (at first order) as �m̃n / �q̃n/q̃n and both q̃n, �q̃n
are exponentially vanishing withN for typical probability

distributions, (�m̃n)2 ⇠ 1
N Var[⇧n�1

⇢
]/(⇧n�1

⇢ )2 is gener-
ally exponentially increasing with N [38]. Nevertheless,
for physical relevant states the estimation error �m̃n is
always under control for reasonable values of N (see next
Section and Supplementary Materials for further details).
For n = 1 we evaluate q1 =

P
���2PN

⇧⇢(���) log⇧⇢(���) via
the estimator

q̃1 =
1

N

NX

µ=1

log⇧⇢(���µ) . (10)

We have Var[q̃1] = Var[log⇧⇢]/N and thus we
are interested in giving an upper bound for
Var[log⇧⇢]. Several works, e.g. Ref. [9], establish
that Var[log⇧⇢]  1

4 log
2(D) + 1. Thus, in our case,

Var[q̃1] . N2 log2(2)/N meaning that in the worst
scenario the number of samples has to scale as N2 to
reach a given accuracy in the estimation. Finally, let us
observe that, after having generated the samples and the
corresponding probabilities, one can in principle devise
better ways of post-processing the data (for instance via
improved estimators).

Numerical experiments. – As a first benchmark of
our algorithm, we considered the T -state |T�i = (|0i +
ei� |1i)/

p
2, with � ranging in [0,⇡/2]. A straightforward

Figure 4. Density of magic of the Ising ground state (g =
0) with periodic boundary conditions, for a system of size
N = 14 and Rényi index n = 1, 2. Exact results obtained in
the free fermions representation [28] are compared with MPS
sampling (N = 104).

calculation yields to M2(|T�i hT�|) = � log[(1 + cos4 �+
sin4 �)/2], and M1(|T�i hT�|) = � cos2 � log(| cos�|) �
sin2 � log(| sin�|). Both the quantities vanish for � =
0,⇡/2, while they have a maximum for � = ⇡/4. In our
experiment, we firstly initialize the system in the product
state | 0i = |T�i⌦N , which is an MPS of bond dimen-
sion � = 1. Afterwards, we apply a random unitary Clif-
ford circuit UC of depth N . In each layer, we randomly
choose a sequence of one-qubits or two-qubits gates ex-
tracted from the Cli↵ord generators {1, S,H,CNOT}.
The final MPS | i = UC | 0i has a larger bond dimen-
sion � � 1, whereas its content of magic is the same of
| 0i, since the magic is invariant under Cli↵ord group.
Thanks to the additivity of the SREs, the density of
magic mn(| i) = Mn(| i)/N is equivalent to the magic
of a single T�state. We apply our sampling algorithm
on the MPS | i, obtaining the estimation m̃n. Results
are shown in Fig. 3, for n = 1, 2 and systems of size be-
tween N = 10 and N = 70. Notice that for N = 70,
the bond dimension of | i grows up to � = 128, depend-
ing on the particular arrangement of the Cli↵ord layers.
Values of � of this order would be extremely challenging
to target with previously known methods [29], whereas
our approach takes only ⇡ O(0.1) sec/sample on a single
node simulation. Notice that the sampling can be easily
parallelized, provided that the MPS is stored in multiple
independent copies. All the data points are in agreement
with theoretical predictions within three error bars (see
Fig. 3 a)). Moreover, a scaling of the statistical error
�m̃n with N at fixed value of N suggests that the fluc-
tuations do not grow significantly with the system size,
even though in principle we might have expected them
to increase exponentially with N for n = 2.

Afterwards, we consider the quantum Ising model H =
�
P

i
�x

i
�x

i+1�h
P

i
�z

i
�g

P
i
�x

i
. For g = 0, this Hamil-

tonian can be easily mapped into a model of free fermions
[39, 40], thus allowing the evaluation of the SREs in terms
of ⇠ 4N determinants of matrices involving fermionic cor-

q̃n =
1
𝒩

𝒩

∑
μ=1

Πρ(σμ)n−1

m̃n = (N(1 − n))−1log q̃n − log 2
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Figure 5. Density of magic after a quantum quench in the
transverse and longitudinal field Ising model (N = 40). The
system is prepared in the ferromagnetic state |+...+i and
quenched with parameters h = 0.5, g = 0.0 (solid line),
h = 0.5, g = 0.25 (dotted line). Magic estimation is ob-
tained with N = 103 samples and pale lines represent the
corresponding statistical uncertainty. Subplot: half-chain en-
tanglement entropy.

relators [28]. In Fig. 4, we compare exact results for mn

(n = 1, 2) obtained in the fermionic representation with
MPS estimations, for a system of size N = 14. In the
MPS approach we find the ground state using standard
one-site DMRG (� = 32). MPS data are in perfect agree-
ment with the exact values, within small error bars.

Finally, we use our algorithm to estimate the dynam-
ics of the magic density during an out-of-equilibrium
protocol. In particular, we prepare the system in
the fully polarized state | (0)i = |+ · · ·+i, where
|+i = (|0i + |1i)/

p
2 is the eigenstate of �x with eigen-

value +1, and we consider the time-evolution generated
by the Ising hamiltonian i.e. | (t)i = e�iHt | (0)i. We
set the transverse and longitudinal fields respectively to
h = 0.5 and g = 0, 0.25. The latter value corresponds
to a phase in which the system is known to exhibit
a dynamical confinement of the excitations [33, 41],
whereas in the free case (g = 0) the quasiparticles give
rise to a light cone spreading of correlations [42]. We use
the TEBD approach to compute the time evolution of
the post-quench MPS [35, 43], with bond-dimension up
to � = 128. Results are shown in Fig. 5 for N = 40. For
g = 0, the magic density seems to saturate rapidly to a
stationary value, although the half-chain entanglement
entropy S = �Tr[%N/2 log %N/2], is still growing linearly
with the time t as expected (see the subplot). In the
confined phase g = 0.25, the magic mn exhibits much
larger oscillations around a slightly lower stationary
value, whereas the entanglement is strongly suppressed
and it approaches to a very low saturation value.

Conclusions. – We have shown that a relatively
new measure of quantum nonstabilizerness, the Stabi-
lizer Rényi Entropies [27], can be estimated e�ciently in
the MPS framework, via a perfect sampling in the space

of Pauli strings operators. Our estimation neither su↵ers
from the exponential growth of the size of the many-body
Hilbert space, nor shows an unfavorable scaling with the
MPS bond dimension. As a matter of fact, we are able
to consider either equilibrium or non-equilibrium wave-
functions with MPS bond-dimension up to values that
were out of reach by any of the previously proposed meth-
ods for evaluating the nonstabilizerness. Specifically, we
applied our method to evaluate the amount of magic gen-
erated after a quench in the quantum Ising chain, and its
sensitivity to the presence of confinement of excitations.
Although we mainly focused on pure MPS, our algorithm
can be easily adapted to non-pure states obtained from
an MPS tracing out a subsystem consisting of the first
or last qubits.

Our approach pave the way to novel extensive numer-
ical studies of the quantum magic, possibly providing
new interesting characterizations of the quantum phases
of matter, in and out-of-equilibrium. In addition, our
new Pauli sampling technique for the MPS can be used
to address crucial problems in quantum many-body
theory, as for instance the operator scrambling.
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EQUILIBRIUM CHECK NON EQUILIBRIUM 

H = − ∑
i

σ x
i σ x

i+1 − h∑
i

σz
i − g∑

i

σ x
i

h = 0 → h = 0.5

|ψ(0)⟩ = | + + … + ⟩

G. Lami and M. Collura, Phys. Rev. Lett. 131, 180401 (2023).



WHAT ABOUT STABILISER 
GROUP OF AN MPS ?



CONNECTION TO SRES
Ongoing project

Make the sampling biased in order to extract stabilizer strings of the MPS:

This allows for the reconstruction of the entire stabilizer group GS(|ψ〉) associated with
the MPS |ψ〉!

How to exploit profitably this knowledge?
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THE STABILIZER DIMENSION  OF  IS THE NUMBER OF 
INDEPENDENT (COMMUTING) PAULI STRINGS GENERATING  

 EQUIVALENTLY, ONE CAN DEFINE.

kψ |ψ⟩

𝒮( |ψ⟩)

ν = N − #gen[𝒮( |ψ⟩)]

Mn( |ψ⟩) =
1

1 − n
log ∑

σ∈𝒫

1
2N

Tr[ρσ]2n ρ = |ψ⟩⟨ψ |

lim
n→∞

(n − 1) Mn( |ψ⟩) = − log ∑
σ∈𝒮(|ψ⟩)

1
2N

= N log 2 − log |𝒮( |ψ⟩) |



BIASING THE PERFECT SAMPLINGOngoing project

Make the sampling biased in order to extract stabilizer strings of the MPS:

This allows for the reconstruction of the entire stabilizer group GS(|ψ〉) associated with
the MPS |ψ〉!

How to exploit profitably this knowledge?
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THE STABILIZER DIMENSION  OF  IS THE NUMBER OF INDEPENDENT (COMMUTING) PAULI 
STRINGS GENERATING   EQUIVALENTLY, ONE CAN DEFINE.

kψ |ψ⟩
𝒮( |ψ⟩)

N − #gen[𝒮( |ψ⟩)]



Πρ(σ) = πρ(σ1)πρ(σ2 |σ1)⋯πρ(σN |σ1⋯σN−1)

σ ∈ 𝒮( |Ψ⟩) ⟺ Πρ(σ) = 1/2N

AT THE GENERIC STEP OF THE SWEEP WE KEEP A CERTAIN NUMBER K OF SUB-STRINGS 


AND THE CORRESPONDING PARTIAL PROBABILITIES

{σμ
[1,i]}

K
μ=1

πρ(σ1…σi) = ∑
⃗σ∈PN−i

1
2N

Tr[ρσ1…σi ⃗σ]2

IDEALLY WE WOULD LIKE TO KEEP TRACK OF ALL POSSIBLE SUB-STRINGS IN ORDER TO IDENTIFY THOSE 
THAT MEET THE STABILISER CONDITION

STABILISER STRING PROBABILITY

IN PRACTICE, ONE HAS TO FIND EFFECTIVE WAYS OF DISCARDING CERTAIN SUB-STRINGS TO ENSURE 
THAT THEIR TOTAL NUMBER REMAINS WITHIN A PREDEFINED MAXIMUM NUMBER  𝒩



HERE THE STRATEGY:
1. FOR ANY STABILISER STRING  THE PARTIAL PROBABILITY AT SITE  IS LOWER BOUNDED:


ACCORDING, ONE CAN DISCARD ALL STORED SUB-STRINGS VIOLATING THAT CONDITION.


2. WHEN K EXCEEDS , ONE CAN SIMPLY SORT THE PARTIAL PROBABILITIES IN DESCENDING ORDER AND SELECT THE SUB-
STRINGS CORRESPONDING TO THE HIGHEST  VALUES.

σ ∈ 𝒮( |ψ⟩) i

𝒩
𝒩

πρ(σ[1,i]) ≥ 1/(2iχi)

These are the sub-strings with the highest 
likelihood to maximise the final probability

G. Lami and M. Collura, Phys. Rev. Lett. 133, 010602 (2024)
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3

a higher likelihood of resulting into stabilizer strings at
the end of the sweep. To this purpose, we adopt the
following two strategies. i) We notice that for any stabi-
lizer string ��� ∈ GS(� �) the partial probability at site i is
lower bounded by 1�(2i�i), i.e. ⇡⇢(���[1,i]) ≥ 1�(2i�i) (see
Lemma 2 in Supp.Mat.). Accordingly, one can discard
all stored sub-strings for which 2i�i⇡⇢(���[1,i]) < 1. ii)

When K exceed N , one can simply sort the probabilities
⇡⇢(���

µ[1,i]) in descending order and select the sub-strings

corresponding to the highest N values. Indeed, these are
the sub-strings with the highest likelihood to maximize
the final probability ⇧⇢(���) at the end of the sweep.
Points i) and ii) establish a straightforward method for
conducting a sampling process with an enhanced abil-
ity to generate Pauli stabilizer strings. At a generic
step i, one has to compute the conditional probabilities
⇡(↵�µ) = ⇡⇢(�

↵
����

µ[1,i−1]) (↵ ∈ {0,1,2,3}, µ ∈ {0,1, ...K})
and, if their total number 4K exceed N , rules i) and ii)

are applied to select N optimal sub-strings. These have
indices (↵★, µ★). All other possible choices are discarded.
The ⇡(↵�µ) are obtained through the tensor contraction:
⇡(↵�µ) =

1
2 ∑s′,s,r′,r(�↵

)s′s(�↵,∗
)r′rTr[(As′

i )
†LµAs

i (A
r
i )

†
⋅

⋅(Lµ
)
†
(Ar′

i )] (see Fig. 1 a)), using a set of environ-
ment matrices Lµ (as in Ref. [23]). These serve to en-
code information regarding samples collected from pre-
viously visited sites, and are updated after the selection

of optimal sub-strings as: Lµ
→ 1��2⇡⇢(�

↵★ ����µ★[1,i−1])�
1�2
⋅

∑s′,s(�↵★)s′s(As′
i )

†Lµ★As
i (see Fig. 1 b)). The prefactor

ensures a correct normalization, i.e. Tr[Lµ
(Lµ
)
†
] = 1 at

each step. Initially, K is set to 1 and Lµ
= (1).

We summarize the full stabilizer sampling recipe in Al-
gorithm 1, graphically supported by Fig. 1. Here, we
represent L has a tensor with three indices: two indices
for the auxiliary MPS space, plus µ. The Pauli tensor
�
↵
s′s = �s′��↵

�s� has also three indices. Indices ↵, µ are
merged together at the end of each step. The output
of Algorithm 1 is a set of K ≤ N stabilizer strings. In
order to find the generators of GS(� �), one has to ex-
tract a minimal set of independent Pauli generators out
of them. This task can be conveniently performed by
applying Gaussian elimination on the tableau matrix ob-
tained with the replacements �0

→ (0,0), �1
→ (1,0),

�
2
→ (1,1), �3

→ (0,1) from the list of samples [5]. This
tableau has shape K × 2N and its reduction can be per-
formed at cost O(NN

2
), if N < N CREDO!. In prac-

tice, these operations are extremely fast since they only
involves bitwise operations. The final result is a set of
independent generators of GS(� �).

Figure 1. The stabilizer sampling Algorithm 1. At a generic
step i, the probabilities ⇡(↵�µ) = ⇡⇢(�↵����µ[1,i−1]) are computed

by means of the stored environment matrices L (a). After-
wards, indices (↵★, µ★) corresponding to the highest partial
probabilities are selected and the tensor L is updated (b)

Algorithm 1 Stabilizer sampling from MPS
Input: a right-normalized MPS � � of size N

1: Initialize: K = 1, {Lµ}Kµ=1 = {(1)}Kµ=1, {⇧µ}Kµ=1 = {1}Kµ=1.
2: for (i = 1, i = N , i + +) do
3: Compute ⇡(↵�µ) = ⇡⇢(�↵����µ[1,i−1])

for ↵ ∈ {0,1,2,3} and µ ∈ {1,2...K}
4: Select the (↵★, µ★) s.t. ⇡(↵★�µ★)⇧µ★ ≥ 1�(2i�i)
5: Set K =min ��{(↵★, µ★)}�,N �
6: Select K indices (↵★, µ★) corresponding to

largest values of ⇡(↵�µ)⇧µ, discard the others
7: for (µ = 1, µ =K, µ + +) do
8: Set {���µ[1,i]} = {(���µ★[1,i−1],�↵★)}
9: Update {⇧µ}→,{⇡(↵★�µ★)⇧µ★} and {Lµ}

10: end for

11: end for

Output: K ≤N stabilizer Pauli string {���µ}Kµ=1

Iterations over modified states. – While these strate-
gies are already e↵ective in ensuring a favorable proba-
bility of sampling GS(� �), this can be further increased.
Firstly, after completing the sampling sweep from i = 1
to i = N , one can repeat it in the reverse direction, i.e.
from i = N to i = 1. Before of the reversed sweep one has
to put the MPS in the left-normalized gauge [7].
Secondly, one can repeat the sampling with modified
states � ′� = UC � �, where UC ∈ CN . Indeed, the dimen-
sion of the stabilizer group is not altered by Cli↵ord uni-
taries, whereas all conditional probabilities are reshu✏ed.
This enables the Algorithm to e↵ectively target unsam-
pled regions of GS(� �). In practice, one can set UC as a
random Cli↵ord circuit of depthD and evolve the MPS to
obtain � ′�. D should remain small to avoid excessively
increasing the bond dimension of � ′� (which grows as
exp(D)). Notice that once the sampling of � ′� is com-
pleted one has to map back the sampled Pauli strings
in order to find stabilizer strings of the original state,
since GS(� �) = UCGS(� ′�)U †C . This task can be easily

α ∈ {0,1,2,3}

μ ∈ {0,…, K}

INITIALLY K=1 AND 𝕃μ = (1)

The output of the algorithm is a set of 
 stabiliser stringsK ≤ 𝒩



ITERATION OVER MODIFIED STATE
WHILE THESE STRATEGIES ARE ALREADY EFFECTIVE IN ENSURING A 
FAVORABLE PROBABILITY OF SAMPLING , THIS CAN BE FURTHER 
INCREASED. 

𝒮( |ψ⟩)

1. REVERSE THE SWEEP

2. REPETE THE SAMPLING ON |ψ′￼⟩ = UC |ψ⟩

Reshuffle the partial probabilities

𝒮( |ψ⟩) = UC𝒮( |ψ′￼⟩)U†
C

MAP BACK THE SAMPLED PAULI STRINGS



To get all stabiliser string 
generators in  

iterations
𝒪(1)

BENCHMARK
|N, NT⟩ ≡ |0⟩⊗(N−NT) |T⟩⊗NT

|T⟩ = TH |0⟩ = ( |0⟩ + eiπ/4 |1⟩)/ 2

|ψ⟩ = UC |N, NT⟩

BY CONSTRUCTION, HAS STABILIZER 
DIMENSION  AND ITS 
GENERATORS CAN BE OBTAINED BY 
E V O L V I N G T H E G E N E R A T O R S 

 OF IN 
THE TABLEAU FORMALISM.

|ψ⟩
kψ = N − NT

{σ3
1…σ3

N−NT
} 𝒮( |N, NT⟩)

𝒩 = 𝒪(N)

4

Figure 1. (One minus) the probability of correctly collecting
all N −NT stabilizer generators of � � = UC �N,NT �. Di↵erent
symbols refer to iterations 1,2,3,4,5 over modified states.
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Figure 2. Number of discovered generators k for successive
iterations iter of the alghorithm over modified states and dif-
ferent sample sizes N (here N = 50, NT = 25, k = 25).

we apply a random Cli↵ord circuit UC ∈ CN obtaining
� � = UC �N,NT �. By construction k = N − NT , and
the stabilizer generators of � � can be obtained by evolv-
ing the generators {�3

1 ...�
3
N−NT

} of GS(�N,NT �) within
the tableau formalism. UC has depth N , and each layer
consists of gates selected randomly from the Cli↵ord gen-
erators {H,S,CNOT}. We contract the circuit to obtain
� � as an MPS, and we apply our method to detect its
stabilizer generators.

In Fig. 1, we represent (one minus) the probability
psucc of correctly obtaining k = k as N increases, for
N = 103 and two values of NT �N (other values, not
shown here, have been tested, with similar results). psucc
is assessed through the iteration of the method over
103 realizations of UC . For each case, we consider 5
iterations over modified states (with D = 1). Notice
that at the final iteration, for all values of NT �N , we
achieve psucc � 1 within the statistical uncertainty, mean-
ing that our technique is always able to learn entirely
GS(� �). In Fig. 2, we represent the number k of gener-
ators found by our method as a function of subsequent
iterations (iter=1,2,3, ...) over modified states for vari-
ous sample sizes N . We set N = 50 and NT = 25, so that
k = N −NT = 25, and we examine 103 realizations of UC .

0 5 10 15 20

n
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15
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k

N = 15 N = 30 N = 45

0 1
n/nmin

0

1

k
/N

Figure 3. Number of stabilizer generators k for a state evolv-
ing through a doped quantum circuit, which comprises a ran-
dom Cli↵ord layer followed by a layer of ⌧ = 3 T gates. Integer
n is the discrete time of the circuit (i.e. n = 1 after applying a
random Cli↵ord layer followed by a T layer). Pales represent
single trajectories (Ntraj = 60 for N = 15,30, Ntraj = 20 for
N = 45), bold lines averages. Inset: same plot with k rescaled
by N and n rescaled by nmin.

In this case, MPS bond dimension increase up to � ∼ 64.
We observe that even with N ∼ o(10), performing around
10 iterations over modified states is enough to learn the
complete stabilizer group.

Afterwards, we examine a doped circuit consisting
of random Cli↵ord layers, interleaved with layers
containing a constant number ⌧ of T gates placed on
random sites. Cli↵ord layers have a staircase geometry,
and gates are uniformly sampled from the two-qubit
Cli↵ord group [43]. We consider the initial state �0�⊗N
and we investigate how its stabilizer group, which has
dimension N , is reduced by the application of T gates.
In Fig. 3, we show the number of generators k as a
function of the discrete circuit time n = 0,1,2,3... for
⌧ = 3 and N = 15,30,45. Data are averaged over many
circuit realizations (trajectories). MPS bond dimension
increase up to � ∼ 1024 for N = 45. Dashed lines
represent the minimum possible number of generators at
time n, namely kmin(n) = N −n⌧ (see Lemma 1 in Supp.
Mat.). Data show that in typical circuit realizations
the value of k at step n fluctuates above this line. This
leads to a prolonged preservation of certain stabilizer
symmetries for a time n longer than the theoretically
required minimum time nmin = N�⌧ . A suitable rescaling
of n and k (average) with N and nmin respectively
(see inset) suggests that this e↵ect might vanish in the
thermodynamic limit, whereas fluctuations of k might
still be relevant.

Conclusions and outlook. – We introduced an
e↵ective classical method to learn the stabilizer group
of a given MPS. Stabilizer strings are extracted via a
biased sampling in the Pauli (Bell) basis over the MPS.

OVER  DIFFERENT REALISATION OF 103 UC



PARTIAL SUMMARY

• QUANTUMNESS  ENTANGLEMENT & MAGIC (or NON-STABILISERNESS)


• MAGIC IS IN GENERAL EXPONENTIALLY HARD TO COMPUTE 


• VIA PERFECT PAULI SAMPLING  VERY EFFICIENT FOR MPS (e.g.: allow to explore the non-
equilibrium!!)


•BIASED PERFECT SAMPLING  EXTRACT STABILISER GROUP OF AN MPS

→

→

→ O(N2χ3)



WHAT ABOUT ENHANCING THE CLASSICAL SIMULATIONS?
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Ĉ1

Ĉ1
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Ĉ†
2

Ĉ†
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EASILY TRANSFORM 
THE OBSERVABLE
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HYBRID STABILIZER MATRIX 
PRODUCT OPERATOR

AF Mello, A Santini, M Collura, arXiv:2405.06045 (accepted on PRL)



|ψ⟩ = C2TC1 |ψ⟩ = C2C1 C†
1 TC1 |ψ⟩

|ψ̃⟩

RANDOM CLIFFORD T-DOPED CIRCUIT
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RANDOM CLIFFORD-FLOQUET U(1) KICKED 
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FIG. 2. Random Cli↵ord T-doped circuit. Left panel: sketch
of the evolution. Right panels: evolution of the half-chain
entanglement entropy of the state evolved according to the
stabilizer-MPO formalism (dots) vs the standard full state
entanglement entropy (solid lines). The system size is N = 40.
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FIG. 3. Random Cli↵ord T-doped circuit. Left panel: evolu-
tion of the average half-chain temporal entanglement entropy
S n,m, for the observable Ô = �̂

3
N/2, against the number of

sites n and time m; parameters D = 1, bond dimension � = 64.
Right panel: line plot extracted from left panel for some values
of m: dashed-line � = 32, solid line � = 64.

�, the implemented protocol allows to push the time evo-
lution simulation further with respect to the standard
sequential application of all the gates (solid lines). No-
tice that, multiple T̂ gates acting simultaneously on the
system can be addressed within the same setup.
Furthermore, as illustrated in Fig. 3, we present the

evolution of the averaged temporal-entanglement entropy
S n,m with respect to the observable Ô = �̂3

N/2. For each

random realization, Ô has been transformed according
to a series of Cli↵ord layers associated with the specific
m configuration. To clarify, following the methodology
depicted in Fig. 1(b), for each fixed evolution depth
m, the corresponding left boundary auxiliary vector
undergoes systematic horizontal evolution, incrementally
adding physical layers from n = 1 to n = N . At each
step, the symmetric bi-partited entanglement entropy
is computed. Although in this setup the horizontal
contraction does not lead to a significant advantage in
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FIG. 4. Random Cli↵ord Floquet Dynamics. Left panel:
sketch of the evolution. Top right panel: evolution of the
kicked magnetization for some values of the kick strength
✏ and N = 40. Bottom right panel: evolution of the half
chain entanglement entropy. Solid lines, analytical prediction;
dashed lines, bond dimension � = 512; dotted lines, bond
dimension � = 256.

terms of the employed resources, it paves the way for
further studies in more specific settings.

Random Cli↵ord Floquet Dynamics. — Here we con-
sider the case of a Floquet dynamics induced by the
repeated action on the initial state |0i⌦N of the single
period evolution operator

Ûm =

0
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A Ĉm (8)

where m is indicating the period step, and Ĉm are random
U(1)-symmetric Cli↵ord gates acting onN qubits; in other
words [Ĉm, M̂ ] = 0 where M̂ =

P
j �̂

3
j /N . In fact, this

is exactly the scenario where we basically mimic, in a
random Cli↵ord setup, the usual Floquet behavior [42–
47]. As a matter of fact, the only deviation from the
perfect oscillation of the magnetization is induced by a
finite value of ✏. In particular, a generic operator of the
U(1)-symmetric Cli↵ord group can be constructed as [48]
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with µj 2 {0, 1, 2, 3}, ⌫ij 2 {0, 1}, , � 2 [�⇡,⇡], and

where P̂n is a generic permutation operator acting on n
qubits which can be implemented using up to N(N �

1)/2 swap operators. In addition Ŝ = diag(1, i) is the
single qubit Phase gate, and ĈZ = diag(1, 1, 1,�1) is
the Controlled-Z gate. For our purpose the global phase
factor is irrelevant so we fixed � = 0.
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T-DOPED CIRCUIT T-GADGET & MEASURE
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NON-STABILISER STATE

Φ|Ψ0⟩ =
k

⨂
i=1

|φi⟩ |Φ(N−k)
non−stab⟩

k N − k

A Paviglianiti, G Lami, M Collura, A Silva, arXiv: 2405.06054
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i ∈ {1,...,k}

i ∉ {1,...,k}

NON-STABILISERNESS KEEPS UNCHANGED

|Ψ1⟩ =
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non−stab⟩

NON-STABILISERNESS DOES CHANGE

Ψ′￼
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⨂
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non−stab⟩

VARIATIONALLY AS AN 
MPS FOR EXAMPLE



CLIFFORD DRESSED TDVP
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 is found variationallyC
720 unsigned Clifford unitaries

A.F. Mello, A. Santini, G. Lami, J. De Nardis, M. Collura, arXiv:2407.01692 

See also: 


G. Lami, T. Haug, J. De Nardis, arXiv:2404.18751. 


X. Qian, J. Huang, M. Qin, arXiv:2405.09217 and arXiv:2407.03202.


… actually the disentangling ones are O(10)
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FIG. 2. (a) Average magnetization and (b) half-chain entan-
glement entropy for the critical transverse field Ising model.
(c) Half-chain magnetization and (d) half-chain entanglement
entropy for the XX model. (e) Average magnetization and
(f) half-chain entanglement entropy for the next-to-nearest-
neighbors Ising chain. Black lines represent free-fermions
(upper and central panels) or ED results (lower panel). Solid
green lines are TDVP data. Markers indicate the Cli↵ord
disentangler, applied every k time steps (see legend in the
upper panel). In all panels we set N = 20, � = 128.

standard 1-TDVP with our novel strategy where the
Cli↵ord disentangler routine is invoked every k time steps
(for various values of k).

Firstly, we consider two integrable cases by setting
Jx
2 = 0 in Eq. (3). Specifically, the critical quantum Ising

chain Jy
1 = 0, Jx

1 = �h = 1 prepared in the fully polarized
state |00 . . . 0i along the ẑ direction, and, the XX model
with Jx

1 = Jy
1 = 1 and h = 0 prepared in the Néel state

|0101 . . . 01i. Finally, we consider the non-integrable next-
to-nearest-neighbors Ising model by setting Jx

2 = Jx
1 =

�h = 1 and Jy
1 = 0 prepared in |00 . . . 0i.

During the time evolution, we observe the dynamics of
the bipartite entanglement entropy at the midpoint of the
chain, which shows discontinuities each time the Cli↵ord
disentangler is applied.
To evaluate the algorithm’s e↵ectiveness in reproduc-

ing the expectation values of local observables (which
may become non-local after the Cli↵ord dressing), we
measure the half-chain magnetization �̂3

N/2 for the XX

model. Notice that this model admits a U(1) symmetry,
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FIG. 3. Error on expectation value of observables (same
observables as in Fig.2). (a)(c)(e) Integrated error ✏(t), and
(b)(d)(f) integrated error at final time ✏T (T = 8). (a)(b)
Critical transverse field Ising model. (c)(d) XX model. (e)(f)
Next-to-nearest-neighbors Ising chain. Solid lines are TDVP
data. Markers indicate the Cli↵ord disentangler, applied every
k = 10 time steps. We set N = 20 and explore di↵erent bond
dimensions � (see legend in the upper panel).

therefore, the total magnetization is conserved. Instead,
for the Ising model, in both cases we measure the average
magnetization M̂z/N =

PN�1
j=0 �̂3

j /N . These quantities,
which are not conserved, experience a nontrivial evolution.
The XX and critical nearest-neighbors Ising models are
exactly solvable, allowing us to compare our numerical
findings with the exact solutions obtained via free-fermion
techniques. For the next-to-nearest-neighbors Ising model,
instead, we resort to comparison with exact diagonaliza-
tion (ED) calculations.
We define a measure of the error up to time t as the

integrated distance between the exact expectation value of
an observable O(t) and the corresponding value obtained
with either TDVP or Cli↵ord enhanced TDVP denoted
as Õ�(t) (for fixed �), i.e.

✏(t) =
1

t

Z t

0

���Õ�(t
0) � O(t0)

��� dt0 . (4)

We also define the integrated error at final time as
✏T = ✏(T ). As mentioned, in our case O corresponds
to either the average magnetization or the on site half-
chain magnetization.
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FIG. 2. (a) Average magnetization and (b) half-chain entan-
glement entropy for the critical transverse field Ising model.
(c) Half-chain magnetization and (d) half-chain entanglement
entropy for the XX model. (e) Average magnetization and
(f) half-chain entanglement entropy for the next-to-nearest-
neighbors Ising chain. Black lines represent free-fermions
(upper and central panels) or ED results (lower panel). Solid
green lines are TDVP data. Markers indicate the Cli↵ord
disentangler, applied every k time steps (see legend in the
upper panel). In all panels we set N = 20, � = 128.

standard 1-TDVP with our novel strategy where the
Cli↵ord disentangler routine is invoked every k time steps
(for various values of k).

Firstly, we consider two integrable cases by setting
Jx
2 = 0 in Eq. (3). Specifically, the critical quantum Ising

chain Jy
1 = 0, Jx

1 = �h = 1 prepared in the fully polarized
state |00 . . . 0i along the ẑ direction, and, the XX model
with Jx

1 = Jy
1 = 1 and h = 0 prepared in the Néel state

|0101 . . . 01i. Finally, we consider the non-integrable next-
to-nearest-neighbors Ising model by setting Jx

2 = Jx
1 =

�h = 1 and Jy
1 = 0 prepared in |00 . . . 0i.

During the time evolution, we observe the dynamics of
the bipartite entanglement entropy at the midpoint of the
chain, which shows discontinuities each time the Cli↵ord
disentangler is applied.
To evaluate the algorithm’s e↵ectiveness in reproduc-

ing the expectation values of local observables (which
may become non-local after the Cli↵ord dressing), we
measure the half-chain magnetization �̂3

N/2 for the XX

model. Notice that this model admits a U(1) symmetry,
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FIG. 3. Error on expectation value of observables (same
observables as in Fig.2). (a)(c)(e) Integrated error ✏(t), and
(b)(d)(f) integrated error at final time ✏T (T = 8). (a)(b)
Critical transverse field Ising model. (c)(d) XX model. (e)(f)
Next-to-nearest-neighbors Ising chain. Solid lines are TDVP
data. Markers indicate the Cli↵ord disentangler, applied every
k = 10 time steps. We set N = 20 and explore di↵erent bond
dimensions � (see legend in the upper panel).

therefore, the total magnetization is conserved. Instead,
for the Ising model, in both cases we measure the average
magnetization M̂z/N =

PN�1
j=0 �̂3

j /N . These quantities,
which are not conserved, experience a nontrivial evolution.
The XX and critical nearest-neighbors Ising models are
exactly solvable, allowing us to compare our numerical
findings with the exact solutions obtained via free-fermion
techniques. For the next-to-nearest-neighbors Ising model,
instead, we resort to comparison with exact diagonaliza-
tion (ED) calculations.
We define a measure of the error up to time t as the

integrated distance between the exact expectation value of
an observable O(t) and the corresponding value obtained
with either TDVP or Cli↵ord enhanced TDVP denoted
as Õ�(t) (for fixed �), i.e.

✏(t) =
1

t

Z t

0

���Õ�(t
0) � O(t0)

��� dt0 . (4)

We also define the integrated error at final time as
✏T = ✏(T ). As mentioned, in our case O corresponds
to either the average magnetization or the on site half-
chain magnetization.

N = 20, χ = 128



TAKE HOME MESSAGES
•Clifford formalism and Matrix Product States can be used together to simplify 

quantum simulations by reducing complexity.


• Up to a point in which entanglement and magic become inseparable. 


•This point, determined by the specific quantum state or task, defines the threshold 
where classical methods fail, necessitating quantum computation.


