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o SIMULATING QUANTUM STATES IS IN GENERAL VERY HARD FOR CLASSICAL COMPUTERS.

o IT IS EXPECTED THAT THE EXACT CLASSICAL SIMULATION OF ARBITRARY QUANTUM
SYSTEMS IS INEFFICIENT, AS THE RESOURCE OVERHEAD EXPONENTIALLY GROWS WITH

THE SIZE OF THE SYSTEM.

" QUANTUM

QUANTUM ADVANTAGE ONLY
WITH BOTH RESQURCES!

QQ .. .NESS
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ENTANGLEMENT

MAGIC

Sergey Bravyi and Alexei Kitaev, Phys. Rev. A 71, 022316 (2005)

ALERT!
LET'S BE CAREFUL



 WE ARE NOT ASKING WHETHER AN ©~ =0 = == RUNNING ON AN © = (100 GUANTUM COMPUTER WOULD
] BE]TER OR NOT TO AN OPTIMAL CLASSICAL ALGORITHM RUNNING ON AN OPTIMAL CLASSICAL COMPUTER.

- The auesTion 1s: DO WE HAVE SITUATIONS WHERE CLASSICAL IS ENOUGH?

Hard classical

')

Quantum

Elelele

simulations

P(o) = |{(c|U|P) |

E.G.; DIGITISED QUANTUM -
ANNEALING E G. Lami, P. Torta, G. E. Santoro, M. Collura, SciPost Phys. 14,
X = 117 (2023); B. Zunkovi, P. Torta, 6. Pecci, G. Lami, M. Collura,
CLASSICAL CONSTRAINED | = arXiv:2406.12392.
OPTIMISATION PROBLEMS

TIME



ENTANGLEMENT

PHYSICISTS AGREE TO IDENTIFY THE ENTANGLEMENT AS A FUNDAMENTAL FEATURE ACCOUNTING FOR QUANTUM
COMPLEXITY, THUS MAKING NECESSARY TO EXPLOIT IT PROFICIENTLY IN ANY QUANTUM COMPUTATION.
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AREA LAW & ENTANGLEMENT ENTROPY
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S(A) = — Trp(pslogpn) = — Zﬂj log/lj

pa = Trg ly) (v

J

# RELEVANT EIGENVALUES
x = exp(S)

S(A) ~ L' (AKA AREA LAW)

1D
2D

S(A) ~ const

SA) ~ L

N.B.: SOME CRITICAL GROUND STATES HAVE
LOGARITHMIC CORRECTION TO THE AREA LAW




DEPTH

PREPARING AN ENTANGLED STATES IS IN GENERAL AN HARD TASK

(QuantuM CIRcuIT OR DIGITISED DYNAMICS
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MPS WITH EXPONENTIALLY LARGE
BOND DIMENSION




THE CLIFFORD GROUP

IN GENERAL, UNITARY TRANSFORMATION COULD TAKE A PAULI MATRIX TO ANY OF A RATHER LARGE CLASS OF UNITARY OPERATORS.

Daniel Gottesman, “The Heisenberg Representation of Quantum Computers”, arXiv:9807006



GROUP

OR THE OTHER WAY ROUND:

STABILIZERS

STABILISER GROUP: THE SET OF OPERATORS IN THE PAULI GROUP FOR WHICH THE INPUT STATES ARE +1
EIGENVECTORS. THE SET OF SUCH OPERATORS IS CLOSED UNDER MULTIPLICATION, AND THEREFORE FORMS A

S(ly)=4{Se€eP:S|ly)=|w)}

A STATE IS CALLED A STABILISER STATE IF IT IS COMPLETELY DESCRIBED BY SPECIFYING THE STABILISER.

1.
2.
3.

ABELIAN
DEGREE 2
ISOMORPHICTO Z%, K< N

1. K=N
2. #gen[S(|y)] =N
3. |w) COMPLETELY SPECIFIED BY THE GENERATORS

WHY SO IMPORTANT?
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STABILIZERS

THE THEOREM STATES THAT STABILISER CIRCUITS CAN BE PERFECTLY
SIMULATED IN POLYNOMIAL TIME ON A PROBABILISTIC CLASSICAL COMPUTER.

1. PREPARATION OF QUBITS IN

2. CLIFFORD GATES.

3. MEASUREMENTS IN THE COMPUTATIONAL BASIS.
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THERE ARE MANY STATES IN THE HILBERT SPACE WHICH ARE NOT STABILISER STATES

COMPUTATION
AL TIME B < cxp( {1 )

1. NON-STABILISERNESS (OR MAGIC) IS A FUNDAMENTAL
RESOURCE FOR ANY QUANTUM ADVANTAGE




1. HOW TO QUANTIFY MAGIC?

2. HOW TO ENHANCE CLASSICAL SIMULATIONS?




STABILISER RENYI ENTROPIES

1
M () = log )’ o Trlpel™ | p = 1y

1 —n
=N

L. Leone, S. F. E. Oliviero, and A. Hamma, Phys. Rev. Lett. 128, 050402 (2022).

APART FROM A CONSTANT,

TO UNDERSTAND THE RELATION WITH USUAL RENYI ENTROPIES DOES COINCIDES WITH THE

RENYI PY OF THE
DISTRIBUTION

1
(o) = Trlpo? 20, ) M(0)=1
G/
PROBABILITY DISTRIBUTION OVER THE PAULI STRINGS

1. M(ly)) =0< |y) ISASTABILISER, OTHERWISE M, (|y)) > O
2. CONSTANTON CLIFFORD ORBITS.

3. ADDITVITY: M, (ly) ® | ) = M, (1y) + M, (1))




PERFECT PAULI SAMPLING

|
M, (1)) = ——log EIT1,(6)"'] = N log 2

M,(|y)) = - EllogI1,(c)] - N log2

THE TASK OF SAMPLING FROM THE SET OF THE PAULI STRINGS,
WHICH HAS SIZE 4%, MAY APPEAR AS EXPONENTIALLY HARD.

]Z'p(Gl cee 0‘])

Il (6) = xn (o)) (0,| 077 (on|O1+-ON_71) 7 (o:|0i+0. ;) =
P pxleps il PN N ,O(Jl s v 7,(01+0i_1)

IN OTHER TERMS, THE CONDITIONAL
PROBABILITY AT THE STEP 7, CAN BE THOUGHT
AS THE PROBABILITY 7, (0) IN THE

PARTIALLY PROJECTED STATE]




PERFECT PAULI SAMPLING

ol ITERATIVE PROCEDURE
B 0101 T ) .
Pj-1 ﬂp((’l ..0]_1)1/2 r[p] 1] pi=1, (0]) 1/2p]_1|

WE CAN GENERATE THE OUTCOMES (AND THE PROBABILITIES OF THAT OUTCOMES) BY ITERATING OVER EACH SINGLE QUBITS:
 SAMPLING EACH LOCAL PAULI MATRIX ACCORDING TO THE CONDITIONAL PROBABILITIES.

o ONCE A LOCAL OUTCOME OCCURS, THE STATE IS UPDATED ACCORDINGLY.

o THE ITERATION PROCEEDS UNTIL ALL QUBITS ARE SAMPLED.

IN ORDER FOR THIS METHOD TO BE COMPUTATIONALLY
AFFORDABLE, WE NEED AN EFFICIENT WAY OF:

TRUE FOR

1. EVALUATING THE CONDITIONAL PROBABILITIES

MPS

G. Lami and M. Collura, Phys. Rev. Lett. 131, 180401 (2023).

2. UPDATING THE STATE ACCORDING TO THE LOCAL OUTCOME




PERFECT PAULI SAMPLING




MPS ITERATIVE ALGORITHM

sample II,(o) by iteratively sampling the conditional probabilities m,(0;|01...0:—1),
fori=1,2,...N;

for an MPS |9} of bond dimension x, the cost of each Pauli sample is O(Nx?);
the final output is a Pauli string o with probability 11,(o);

by repeating A times, you can find accurate estimations of M, (|1))).

O(Ny o) O(N'Ny*)

T. Haug and L. Piroli, Phys. Rev. B 107, 035148 (2023)
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G. Lami and M. Collura, Phys. Rev. Lett. 131, 180401 (2023).

NON EQUILIBRIUM
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WHAT ABOUT STABILISER
GROUP OF AN MPS ?



CONNECTION T0 SRES

THE STABILIZER DIMENSION kWUF | y) 1S THE NUMBER OF
INDEPENDENT (COMMUTING) PAULI STRINGS GENERATING

&' (| y)) EQUIVALENTLY, ONE CAN DEFINE.

1
log ) —Trlpol™  p =yl
cES

M, (|y)) =

1l —n

, ]
lim (n — )M (|y)) = — log Z o = Nlog2 —log|S(|y))]
e c€S(|w))




BIASING THE PERFECT SAMPLING

Make the sampling biased in order to extract stabilizer strings of the MPS:

This allows for the reconstruction of the entire stabilizer group Gs(|v)) associated with
the MPS |¢)!

THE STABILIZER DIMENSION kl// OF |y ) IS THE NUMBER OF INDEPENDENT (COMMUTING) PAULI
STRINGS GENERATING 8’ | y)) EQUIVALENTLY, ONE CAN DEFINE.




STABILISER STRING PROBABILITY

ceS(|¥V) <= I1,(0) = 1/2N

I1,(0) = n (o7, (05| 61)7,(O | 61+ Op_1)

\ R . /

AT THE GENERIC STEP OF THE SWEEP WE KEEP A CERTAIN NUMBER K OF SUB-STRINGS {6[”1 i fl{:l

AND THE CORRESPONDING PARTIAL PROBABILITIES

1 -
m,(0...0;) = Z ﬁTr[pal...aia]z

cEPy_,

IDEALLY WE WOULD LIKE TO KEEP TRACK OF ALL POSSIBLE SUB-STRINGS IN ORDER TO IDENTIFY THOSE
THAT MEET THE STABILISER CONDITION

IN PRACTICE, ONE HAS TO FIND EFFECTIVE WAYS OF DISCARDING CERTAIN SUB-STRINGS TO ENSURE
THAT THEIR TOTAL NUMBER REMAINS WITHIN A PREDEFINED MAXIMUM NUMBER ./




HERE THE STRATEGY:

1. FOR ANY STABILISER STRING 0 € &'( | l//)) THE PARTIAL PROBABILITY AT SITE 7 IS LOWER BOUNDED:
”p(o'[u]) > 1/(21)(1')

ACCORDING, ONE CAN DISCARD ALL STORED SUB-STRINGS VIOLATING THAT CONDITION.

2. WHEN K EXCEEDS ./, ONE CAN SIMPLY SORT THE PARTIAL PROBABILITIES IN DESCENDING ORDER AND SELECT THE SUB-
STRINGS CORRESPONDING TO THE HIGHEST ./J” VALUES.

These are the sub-strings with the highest
likelihood to maximise the final probability

G. Lami and M. Collura, Phys. Rev. Lett. 133, 010602 (2024)




GENERIC STEP

a)

Wp(aa‘au )=

b)

[1,i-1]

2

selected indices corresponding to

Pauli strings with highest probability

INITIALLY K=TAND [L¥ = (1)

e {0123}

u € {0,...,K}

The output of the algorithm is a set of
K < J stabiliser strings




ITERATION OVER MODIFIED STATE

WHILE THESE STRATEGIES ARE ALREADY EFFECTIVE IN ENSURING A

FAVORABLE PROBABILITY OF SAMPLING &’( | y)). THIS CAN BE FURTHER
INCREASED.

1. REVERSE THE SWEEP
2. REPETE THE SAMPLING ON | ') = U | )

Reshuffle the partial probabilities

MAP BACK THE SAMPLED PAULI STRINGS
S(y) = UcS(ly)U



BENCH
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|l//> = UClNaNT>

BY CONSTRUCTION, |r)HAS STABILIZER
DIMENSION kl/f =N— N, AND ITS , —
GENERATORS CAN BE OBTAINED BY | T
EVOLVING THE GENERATORS '

{0'13...0]%,_]\, } OF S(|N,Ny))IN

THE TABLEAU FORMALISM. o T S

N = O(N)

To get all stabiliser string

generators in O(1)
iterations

OVER 107 DIFFERENT REALISATION OF Uec




PARTIAL SUMMARY

® QUANTUMNESS — ENTANGLEMENT &

® MAGIC IS IN GENERAL EXPONENTIALLY HARD TO COMPUTE

o VIA — VERY EFFICIENT FOR MPS (e.g.: allow to explore the non-
equilibrium!!)

o BIASED PERFECT SAMPLING — EXTRACT STABILISER GROUP OF AN O(N 2)(3)




WHAT ABOUT ENHANCING THE CLASSICAL SIMULATIONS?




AAAAA

Evolve | |y) = C3R,CoR,C | yp)

Measure| O = [Z17

R, = II[cos(0))I — isin(6,)P]I

= cos(0))IIII — isin(0,)IIPI
LETS APPLY THE STABILISER FORMALISM

R1C1 o Cl—l]_l

_l]—l = COS(QI)IIII - iSin(Ql)ﬁyllc’}Vlz&ymg}’m

MPO with ¥ = 2 no matter de Clifford circuit!!!!
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HYBRID STABILIZER MATRIX
ly) = C.R,C,C, T, |uh) PRODUCT OPERATOR
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ly) = ;GG LT | l//o>
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O = o106
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Compute
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Bulis IIned

AF Mello, A Santini, M Collura, arXiv:2405.06045 (accepted on PRL)
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Entanglement growth

RANDOM CLIFFORD T-DOPED CIRCUIT

lw) = GTC ly) = GC GTC [y




RANDOM CLIFFORD-FLOQUET U(1) KICKED

Random N qubits
U(T) symmetric
Clifford Unitary




T-DOPED CIRCUIT T-GADGET & MEASURE
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: MEASURE & CLIFFORD
ON
NON-STABILISER STATE
" ™

A Paviglianiti, G Lami, M Collura, A Silva, arXiv: 2405.06054
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W) = ® 310 [ @0
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i & {1,....k}  NON-STABILISERNESS DOES CHANGE

W) ~ ®|<a] oo 0

=1

VARIATIONALLY AS AN
A Paviglianiti, G Lami, M Collura, A Silva, arXiv: 2405.06054 MPS FOR EXAMPLE




CLIFFORD DRESSED TDVP

A.F. Mello, A. Santini, G. Lami, J. De Nardis, M. Collura, arXiv:2407.01692

|w(t,)) = Umds) | yp) |w(t,)) = Cly(t,))

C is found variationally

/20 unsigned Clifford unitaries
.. actually the disentangling ones are O(10)

See also:
G. Lami, T. Haug, J. De Nardis, arXiv:2404.18751.
X. Qian, J. Huang, M. Qin, arXiv:2405.09217 and arXiv:2407.03202.



CLIFFORD DRESSED TDVP




CLIFFORD DRESSED TDVP
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TAKE HOME MESSAGES

e Clifford formalism and Matrix Product States can be used together to simplify
guantum simulations by reducing complexity.

o a point in which

o This point, determined by the specific quantum state or task, defines the threshold
where classical methods fail, necessitating quantum computation.
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